TUD Organische ChemieImmelPublicationsPapersAbstract 18View or Print (this frame only)View or Print (this frame only)

Molecular Modeling of Saccharides, Part XIX.

Cyclofructins with Six to Ten β(1→2)-linked Fructofuranose Units: Geometries, Electrostatic Profiles, Lipophilicity Patterns, and Potential for Inclusion Complexation

Stefan Immel, Guido E. Schmitt, and Frieder W. Lichtenthaler

Carbohydr. Res., 1998, 91-105.

Cyclofructins composed of six (1, "CF6") to ten (5, "CF10") β(1→2)-linked fructofuranose units were subjected to conformational analysis using Monte-Carlo simulations based on the PIMM91 force-field. Breaking the molecular symmetry partially by alternating inclination of the spiro-type anellated fructofuranoses relative to the crown ether ring core, i.e. the 3-OH groups pointing either towards or away from the molecular center, substantially lowers the strain energy of the cyclofructins. The global energy-minimum geometries of CF6, CF8, and CF10 exhibit Cn/2 rotational symmetry, whilst the odd-membered macrocycles in CF7 and CF9 adopt C1 symmetry. Identical conformations of the solid-state geometry of CF6 (1) and its computer-generated form manifest the reliability of the computational analysis. The molecular surfaces calculated for the energy-minimum structures establish a disk-type shape for CF6 (1), CF7 (2), and CF8 (3), whereas further ring enlargement to CF9 (4) and CF10 (5) leads to torus- shaped molecules with through-going cavities. Color-coded projection of the molecular lipophilicity patterns (MLPs) and the electrostatic potential profiles (MEPs) onto these surfaces cogently displays the crown ether-like properties, favoring the complexation of metal cations via strong electrostatic interactions through the 3-OH groups located on the hydrophilic molecular side. The central cavities of CF9 and CF10 are characterized not only by significantly enhanced hydrophobicity, but also by highly negative electrostatic potentials around the narrow aperture of the tori made up by the 3-OH / 4-OH groups, and positive potentials on the opposite rim. Accordingly, CF9 and CF10 are capable to form inclusion complexes, the cavity of the latter being approximately as large as the one of a-cyclodextrin. Calculation of the inclusion complex geometries of CF9 with β-alanine and of CF10 with p-aminobenzoic acid revealed the guest to be deeply incorporated into the respective cavities, masking the guest's hydrophobic parts. Analysis of the electrostatic interactions at the interface of the zwitter-ionic guests with the oppositely polarized hosts predicts a high degree of regiospecificity for complex formation.

CF6 molecular surface
CF7 molecular surface
CF8 molecular surface
CF9 molecular surface
CF10 molecular surface
CF6 cross-section cut
CF7 cross-section cut
CF8 cross-section cut
CF9 cross-section cut
CF10 cross-section cut
cyclo[D-Frufβ(1→2)]6
cyclo[D-Frufβ(1→2)]7
cyclo[D-Frufβ(1→2)]8
cyclo[D-Frufβ(1→2)]9
cyclo[D-Frufβ(1→2)]10

Cyclofructin formula

Cyclofructin formula
Cross-section contours through the surfaces of the most stable structures computed for the inclusion complexes of 4 with β-alanine (left) and 5 with p-amino benzoic acid (right). CF9 beta-alanine complex CF10 p-aminobenzoic acid complex

Additional Graphics: Cyclofructins

Citations:

  1. S. Immel, G.E. Schmitt, and F.W. Lichtenthaler, in J.J. Torres Labandeira (Ed.), Proceedings 9th Internat. Cyclodextrin Symp., Kluwer Academic, Dordrecht, The Netherlands, in press.
  2. M. Kawamura and T. Uchiyama, Carbohydr. Res., 260 (1994) 297–304.
  3. M. Kawamura, T. Uchiyama, T. Kuramoto, Y. Tamura, and K. Mizutani, Carbohydr. Res., 192 (1989) 83–90.
  4. T. Uchiyama, Inulin and Inulin-Containing Crops, Elsevier Science, Amsterdam, The Netherlands, 1993, pp. 143–148.
  5. F.W. Lichtenthaler and S. Immel, Tetrahedron: Asymmetry, 5 (1994) 2045–2060.
  6. S. Immel and F.W. Lichtenthaler, Liebigs Ann. Chem., (1996) 39–44.
  7. T. Nakagawa, K. Ueno, M. Kashiwa, and J. Watanabe, Tetrahedron Lett., 35 (1994) 1921–1924.
  8. (a) T. Takaha, M. Yanase, H. Takata, S. Okada, and S.M. Smith, J. Biol. Chem., 271 (1996) 2902–2908; (b) Y. Tesada, M. Yanase, H. Takata, T. Takaha, and S. Okada, J. Biol. Chem., 272 (1997) 15729–15733.
  9. S. Immel, J. Brickmann, and F.W. Lichtenthaler, Liebigs Ann. Chem., (1995) 929–942.
  10. (a) T. Fujiwara, N. Tanaka, and S. Kobayashi, Chem. Lett., (1990) 739–742; (b) I. Miyazawa, T. Endo, H. Ueda, S. Kobayashi, and T. Nagai, Eur. J. Pharm. Sci., 3 (1995) 153–162; (c) R. Uchida, A. Nasu, K. Tobe, T. Oguma, and N. Yamaji, Carbohydr. Res., 287 (1996) 271–274.
  11. T. Endo, H. Nagase, H. Ueda, S. Kobayashi, and T. Nagai, Chem. Pharm. Bull., 45 (1997) 532–536.
  12. H. Ueda, T. Endo, H. Nagase, S. Kobayashi, and T. Nagai, J. Inclusion Phenom. Mol. Recogn. Chem., 25 (1996) 17–20.
  13. J. Jacob, K. Geßler, D. Hoffmann, H. Sanbe, K. Koizumi, S.M. Smith, T. Takaha, and W. Saenger, Angew. Chem., 110 (1998) 626–629; Angew. Chem. Int. Ed., 37 (1998) 605–609.
  14. T. Endo, H. Ueda, S. Kobayashi, and T. Nagai, Carbohydr. Res., 269 (1995) 369–373.
  15. T. Endo, H. Nagase, H. Ueda, A. Shigihara, S. Kobayashi, and T. Nagai, Chem. Pharm. Bull., 45 (1997) 1856–1859.
  16. H. Ueda, T. Endo, H. Nagase, S. Kobayashi, and T. Nagai, in J.J. Torres Labandeira (Ed.), Proceedings 9th Internat. Cyclodextrin Symp., Kluwer Academic, Dordrecht, The Netherlands, in press.
  17. S. Kitamura, H. Isuda, J. Shimada, T. Takada, T. Takaha, S. Okada, M. Mimura, and K. Kajiwara, Carbohydr. Res., 304 (1997) 303–314.
  18. Y. Nogami, K. Nasu, T. Koga, K. Ohta, K. Fujita, S. Immel, H.J. Lindner, G.E. Schmitt, and F.W. Lichtenthaler, Angew. Chem., 109 (1997) 1987–1991; Angew. Chem. Int. Ed. Engl., 36 (1997) 1899–1902.
  19. K. Fujita, H. Shimada, K. Ohta, Y. Nogami, K. Nasu, and T. Koga, Angew. Chem., 107 (1995) 1783–1784; Angew. Chem. Int. Ed. Engl., 34 (1995) 1621–1622.
  20. Y. Nogami, K. Fujita, K. Ohta, K. Nasu, H. Shimada, C. Shinohara, and T. Koga, J. Inclusion Phenom. Mol. Recogn. Chem., 25 (1996) 53–56.
  21. M. Sawada, T. Tanaka, Y. Takai, T. Hanafusa, T. Taniguchi, M. Kawamura, and T. Uchiyama, Carbohydr. Res., 217 (1991) 7–17.
  22. (a) N. Yoshie, H. Hamada, S. Takada, and Y. Inoue, Chem. Lett., (1993) 353–356; (b) T. Uchiyama, M. Kawamura, T. Uragami, and H. Okuno, Carbohydr. Res., 241 (1993) 245–248.
  23. Y. Takai, Y. Okumura, T. Tanaka, M. Sawada, S. Takahashi, M. Shiro, M. Kawamura, and T. Uchiyama, J. Org. Chem., 59 (1994) 2967–2975.
  24. (a) H.J. Lindner and M. Kroeker, PIMM91—Closed Shell PI-SCF-LCAO–MO-Molecular Mechanics Program, Darmstadt University of Technology, Germany, 1996; (b) A.E. Smith and H.J. Lindner, J. Comput.-Aided Mol. Des., 5 (1991) 235–262.
  25. (a) N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A. Teller, and E. Teller, J. Chem. Phys., 21 (1953) 1087–1092; (b) W. F. van Gunsteren and H.J.C. Berendsen, Angew. Chem., 102 (1990) 1020–1050; Angew. Chem. Int. Ed. Engl., 29 (1990) 992–1023.
  26. H. Goto and E. Osawa, J. Am. Chem. Soc., 111 (1989) 8950–8951.
  27. The 3D-structures can be viewed at: http://sugar.oc.chemie.tu-darmstadt.de/ak/immel/structures/index.html; MOLCAD graphics are available at: http://sugar.oc.chemie.tu-darmstadt.de/ak/immel/graphics/gallery/index.html.
  28. (a) J. Brickmann, MOLCAD—MOLecular Computer Aided Design, Darmstadt University of Technology, Germany, 1996; J. Chim. Phys., 89 (1992) 1709–1721; (b) M. Waldherr-Teschner, T. Goetze, W. Heiden, M. Knoblauch, H. Vollhardt, and J. Brickmann, in F.H. Post and A.J.S. Hin (Eds.), Advances in Scientific Visualization, Springer, Heidelberg, Germany, 1992, pp. 58–67; (c) J. Brickmann, T. Goetze, W. Heiden, G. Moeckel, S. Reiling, H. Vollhardt, and C.-D. Zachmann, in J.E. Bowie (Ed.), Insight and Innovation in Data Visualization, Manning, Greenwich, U.K., 1994, pp. 83–97.
  29. (a) F.M. Richards, Ann. Rev. Biophys. Bioeng., 6 (1977) 151–176; Carlsberg. Res. Commun., 44 (1979) 47–63; (b) M.L. Connolly, J. Appl. Cryst., 16 (1983) 548–558; Science, 221 (1983) 709–713.
  30. B. Lee and F.M. Richards, J. Mol. Biol., 55 (1971) 379–400.
  31. (a) D. Cremer and J.A. Pople, J. Am. Chem. Soc., 97 (1975) 1354–1358; (b) G.A. Jeffrey and R. Taylor, Carbohydr. Res., 81 (1980) 182–183.
  32. J.E. Kilpatrick, K.E. Pitzer, and R. Spitzer, J. Am. Chem. Soc., 69 (1947) 2483–2488.
  33. (a) J.D. Dunitz and P. Seiler, Acta Crystallogr., Sect. B, 30 (1974) 2339–2341; (b) E. Maverick, P. Seiler, B. Schweizer, and J.D. Dunitz, Acta Crystallogr., Sect. B, 36 (1980) 615–620.
  34. (a) C.J. Pedersen, J. Am. Chem. Soc., 89 (1967) 2495–2496; 7017-7036; (b) J.W.H.M. Uiterwijk, S. Harkema, and D. Feil, J. Chem. Soc., Perkin Trans. 2, (1987) 721–731.
  35. F.W. Lichtenthaler and S. Immel, Liebigs Ann. Chem., (1996) 27–37.
  36. R.J. Clarke, J.H. Coates, and S.F. Lincoln, Adv. Carbohydr. Chem. Biochem., 46 (1988) 205–249.
  37. W. Blokzijl and J.B.F.N. Engberts, Angew. Chem., 105 (1993) 1610–1648; Angew. Chem. Int. Ed. Engl., 32 (1993) 1545–1579.
  38. W. Heiden, G. Moeckel, and J. Brickmann, J. Comput.-Aided Mol. Des., 7 (1993) 503–514.
  39. M. Teschner, C. Henn, H. Vollhardt, S. Reiling, and J. Brickmann, J. Mol. Graphics, 7 (1994) 98–105.
  40. F.W. Lichtenthaler and S. Immel, in M. Mathlouthi, J.A. Kanters, and G.G. Birch (Eds.), Sweet Taste Chemoreception, Elsevier Applied Science, London/New York, 1993, pp. 21–53.
  41. F.W. Lichtenthaler and S. Immel, Internat. Sugar J., 97 (1995) 12–22.
  42. F.W. Lichtenthaler and S. Immel, Starch/Stärke, 48 (1996) 145–154.
  43. F.W. Lichtenthaler and S. Immel, in J. Szejtli and L. Szente (Eds.), Proc. 8th Internat. Symp. on Cyclodextrins, Kluwer Academic, Dordrecht, The Netherlands, 1996, pp. 3–16; J. Inclusion Phenom. Mol. Recognit. Chem., 25 (1996) 3–16.
  44. H. Gohlke, S. Immel, F.W. Lichtenthaler, and G.E. Schmitt in J.J. Torres Labandeira (Ed.), Proc. 9th Internat. Symp. on Cyclodextrins, Kluwer Academic, Dordrecht, The Netherlands, in press.
  45. D.E. Koshland, Jr., Angew. Chem. 106 (1994) 2468–2471; Angew. Chem. Int. Ed., 33 (1994) 2408–2412.
  46. (a) E. Fischer, Ber. Dtsch. Chem. Ges., 27 (1894) 2985–2993; (b) F.W. Lichtenthaler, Angew. Chem., 106 (1994) 2456–2467; Angew. Chem. Int. Ed. Engl., 33 (1994) 2364–2374.
  47. S. Immel, G.E. Schmitt, and F.W. Lichtenthaler, in J.J. Torres Labandeira (Ed.), Proceedings 9th Internat. Cyclodextrin Symp., Kluwer Academic, Dordrecht, The Netherlands, in press.
  48. (a) Cambridge Crystallographic Data File, Version 5.09, 1995; (b) F.H. Allen, S.A. Bellard, M.D. Brice, B.A. Cartwright, A. Doubleday, H. Higgs, T. Hummelink, B.G. Hummelink-Peters, O. Kennard, W.D.S. Motherwell, J.R. Rodgers, and D.G. Watson, Acta Crystallogr., Sect. B, 35 (1979) 2331–2339; (c) F.H. Allen, O. Kennard, and R. Taylor, Acc. Chem. Res., 16 (1983) 146–153.
  49. D.J. Heisterberg, QTRFIT—Rigid Body Rotation and Fitting Program, The Ohio Supercomputer Center, Columbus, Ohio 43212, 1991.
  50. S. Immel, MolArch+—MOLecular ARCHitecure Modeling Program, Darmstadt University of Technology, Germany, 1997.

© Copyright PD Dr. S. Immel